DIPLOMA PROGRAMME ## **MOCK EXAMINATION** 2020 | 1 | B T | | | | | | |---|-----|---|----|---|---|--| | | N | 1 | 11 | n | Ω | | | | w | ~ | | | | | **CHEMISTRY** **HIGHER LEVEL** PAPER 2 2 hours 15 minutes ## **INSTRUCTIONS TO CANDIDATES** - Do not open this examination paper until instructed to do so. - Answer all questions. Attempt only one question from options of question number 9. - Write your answers in the boxes provided. - A calculator is required for this paper. - A clean copy of the Chemistry data booklet is required for this paper. - The maximum mark for this examination paper is [90 marks] | Ag | ιO _y . | |-----|--| I | [2 marks] | | pro | ocedure. | | | | | | | | • | [2 marks] | | 10 | . Naturally occurring silver is composed of two stable isotopes, $^{107}\mathrm{Ag}$ and $^{109}\mathrm{Ag}$. | | | The relative atomic mass of silver is 107.87. Show that isotope $^{107}\mbox{Ag}$ is more abundant. | | | | | | | | | | | | [1 mark] | **1a.** After heating 3.760 g of a silver oxide 3.275 g of silver remained. Determine the empirical formula of | Γhe indicator is listed | in section 22 of the data booklet. | | |--------------------------------|--|------------------------------------| | | the resulting solution and the chemical fo | ormula of the product formed after | | reaction with water fo | or each oxide. | | | Flask
containing | Colour of solution | Product formula | | Na ₂ O | | | | P ₄ O ₁₀ | [3 mar | | | | | [2 marks] | outli
el). | ne th | ie mo | del of | electr | on co | nfigur | ation | deduc | ed fro | m the | hydro | ogen li | ne em | ission | spectr | rum (B | |---------------|-------|-------|--------|--------|--------|--------------|--------------------|-------|--------|-------|-------|---------|-------|--------|--------|--------| [2 m | | Stat | e the | nucle | ear sy | mbol | notati | on, Z^{-1} | X _{, for} | magn | esium | -26. | **2b.** Mass spectroscopic analysis of a sample of magnesium gave the following results: | | % abundance | |-------|-------------| | Mg-24 | 78.60 | | Mg-25 | 10.11 | | Mg-26 | 11.29 | Calculate the relative atomic mass, A_r , of this sample of magnesium to two decimal places. | | | | | | [2 mar | |---------|-------------------------|--------------------|-------------------|------------------|-----------| | tion of | magnesium oxide with | ı water. | [1 mai | | Descri | be the trend in acid-ba | se properties of t | he oxides of peri | iod 3, sodium to | chlorine. | mula of this compound | | |---|--------| | | | | | | | | | | | | | | | | | [1 mar | | . Describe the structure and bonding in solid magnesium oxide. | [2 mar | | . Magnesium chloride can be electrolysed. | | | Deduce the half-equations for the reactions at each electrode when molten magnesiu electrolysed, showing the state symbols of the products. The melting points of magne magnesium chloride are 922 K and 987 K respectively. | | | Anode (positive electrode): | | | Cathode (negative electrode): | | | | | | 3 | $2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$ | | |----|---|------------------| | 3a | . Deduce the equilibrium constant expression, $K_{ m c}$, for the reaction. | [1 mank | | | | [1 mark] | | 3ł | 5. State and explain the effect of increasing the temperature on the yield of sulfur trioxide. | <i>[</i> 2] 1] | | | | [2 marks] | | 30 | c. State the effect of a catalyst on the value of $K_{ m c}$. | [1 mark] | | [2 | 2 ma | |---------------------|--|------| | Define <i>oxida</i> | tion in terms of oxidation numbers. | | | | | | | | | | | | | | | | | [1 m | | | ng a labelled diagram, the essential components of an electrolytic cell. | | | | ing a labelled diagram, the essential components of an electrolytic tell. | | | | ing a labelled diagram, the essential components of an electrolytic cell. | | | | ing a labelled diagram, the essential components of an electrolytic tell. | | | | ing a labelled diagram, the essential components of an electrolytic tell. | | | | ing a labelled diagram, the essential components of an electrolytic tell. | | | | ing a labelled diagram, the essential components of an electrolytic tell. | •••• | | | ing a labelled diagram, the essential components of an electrolytic tell. | | | | ing a labelled diagram, the essential components of an electrolytic cen. | | | | ing a rabelled diagram, the essential components of an electrolytic cent. | | | | ing a rabelled diagram, the essential components of an electrolytic cen. | | | | ing a rabelled diagram, the essential components of all electrolytic cell. | | | 4c. | Explain why $_{so}$ lid sodium chloride does not conduct electricity but \mathbf{molten} sodium chloride does. | |-----|---| | | | | | | | | | | L | [2 marks] | | 4d | Molten sodium chloride undergoes electrolysis in an electrolytic cell. For each electrode deduce the | | | F-equation and state whether oxidation or reduction takes place. Deduce the equation of the overall cell ction including state symbols. | L | [5 marks] | | ıas | Electrolysis has made it possible to obtain reactive metals such as aluminium from their ores, which resulted in significant developments in engineering and technology. State one reason why aluminium ferred to iron in many uses. | | | | | | | | | | | L | [1 mark] | | 41. Outline tw | o differences between an electrolytic cell and a voltaic cell. | | |------------------------------|---|-----------| [2 marks] | | 5 (a) Ex | plain the meaning of the term <i>hybridization</i> . | | | | | | | | | (1) | | (b) | State the type of hybridization shown by the carbon atom in the H–C \equiv N molecule, number of σ and π bonds present in the C \equiv N bond. | and the | | | | | | | | | | | | (2) | | (c) | Describe how σ and π bonds form. | Use values from Table 10 in the Data Booklet to calculate the enthalpy change, ΔH^{Θ} , for this reaction. | |---| | | | | | | | | | | | The magnitude of the entropy change, ΔS , at 27°C for the reaction is 62.7 J K ⁻¹ mol ⁻¹ . State, with a reason, the sign of ΔS . | | | | | | Calculate ΔG for the reaction at 27°C and determine whether this reaction is spontaneous at this temperature. | | | | | | | | | Consider the following reaction. **6.** | Data | a Booklet. | |----------------|---| | (i) | Explain the significance of the Arrhenius constant, <i>A</i> , in this equation. (1) | (ii) | Explain what is meant by the term <i>activation energy</i> , E_a . (1) | | | | | | | | | | | | | | (iii)
a rea | Describe how, using a graphical method, values of A and E_a can be obtained for action. (3) | | | | | | | | | | | | | | | | The variation of the rate constant, k, for a reaction with temperature is shown by the Arrhenius equation. Two versions of this equation are shown in the (b) The equation for a reaction used in industry is $$CH_2CH_2 + CI_2 \rightarrow CH_2CICH_2CI$$ $\Delta H^{\Theta} = -185 \text{ kJ}$ Iron (III) Chloride can be used as a catalyst for the reaction. (i) Explain the difference between the terms homogeneous and heterogeneous when applied to a catalyst. (ii) Draw an enthalpy level diagram for this reaction, including labels for ΔH^{Θ} , E_{a} and the activation energy when a catalyst is used, E_{cat} . (4)(1) (Total 10 marks) **8.** For the following compounds BCl₃, NH₃, XeF₄ (i) Draw a Lewis structure for each molecule. (Show all non-bonding electron pairs.) | ••••• | | |------------|---| | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | | (3) | | (ii) State | the shape of each molecule and predict the bond angles. | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | | | ••••• | (Total 0 marks) | | | (Total 9 marks) | | 9.A (i) | A compound ${\bf D}$ has the molecular formula $C_2H_4O_2$ and is obtained from a reaction between methanoic acid and methanol. Write an equation for this reaction and state the name of ${\bf D}$. | | | | | | | | | | | | | | (3 | |-----|------|---|-----| | | | | | | | (ii) | A second compound, E , has the same molecular formula as D and has acidic properties. | | | | | State the name of compound E . | | | | | | | | | | | (1) | | | | | | | 9B. | Bron | noethane reacts with ammonia as follows. | | | | | $CH_3CH_2Br + NH_3 \rightarrow CH_3CH_2NH_3^+ + Br^-$ | | | | | $CH_3CH_2NH_3^+ + NH_3 \rightarrow CH_3CH_2NH_2 + NH_4^+$ | | | | The | mechanism for this reaction is described as S_N2 . | | | | | | | | | (a) | State the meaning of each of the symbols in S_N2 . | (2) | | (b) | State the name of the organic product of the reaction, CH ₃ CH ₂ NH ₂ . | | |---------|--|------------| | | | (1) | | (c) | Explain, using "curly arrows" to show the movement of electron pairs, the mechanism of the attack by ammonia on bromoethane, and show the structure of the transition state. | | | | | | | | | | | | | | | | | (4) | | | mpound, 2-Bromobutane, $CH_3CHBrCH_2CH_3$, can react with Sodium Hydroxide to form ls \mathbf{F} , \mathbf{G} and \mathbf{H} . | 1 | | | npound \mathbf{F} , $C_4H_{10}O$, exists as a pair of optical isomers. Compounds \mathbf{G} and \mathbf{H} , C_4H_8 , are isomers, and compound \mathbf{H} exists as a pair of geometrical isomers. | | | Draw th | ne structures of the two optical isomers of F . | (2) | | | (Total 13 ma | | | | | | | | | | | OR | | | Define the term pH. 9A (i) | | (1) | |---|---| | | | | (ii) State what is meant by the term <i>buffer so</i> an acid buffer solution in general terms. | olution, and describe the composition of | | | | | | | | (ii) | | | Calculate the pH of a mixture of 50 cm ³ of Am | monia solution of | | Concentration 0.10 mol dm ⁻³ and 50 cm ³ of Hy | drochloric acid solution of | | concentration 0.050 mol dm ⁻³ . | | | | | | | | | | (4) | | 9B In aqueous solution at 298 K, ammonia is a weak base 1.7×10^{-5} mol dm ⁻³ . | e with a p K_b value of 4.75 and a K_b value of | | (a) Write an equation for the reaction of ammoni | a with water. | | | (1 | | (b) State the ionization constant expression, K_b , f | or ammonia. | | | | (1 | |----|--|----------------| | c) | Calculate the pH of a 0.25 mol dm ⁻³ solution of ammonia. | | | | | | | | | | | | | | | | | (Total 13 mark |